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INSTABILITY OF THE SELF-SIMILAR FRONT OF A PHASE TRANSITION 

Yu. Ao Buevich UDC 536.42 

The stability of self-similar diffusional processes with respect to small disturban- 
ces of plane, cylindrical, and spherical phase interfaces is investigated. 

Self-similar processes of diffusion and heat conduction accompanying phase or chemical 
transformations are very common both in nature and in engineering. Many actual processes of 
vaporization, sublimation and condensation, dissolution, melting and crystallization, abla- 
tion, combustion, etc., enter precisely into self-similar asymptotic forms over a certain 
time interval dependent on the specifics of the initial conditions. In many cases, however, 
such an asymptotic stage of the process proves to be unstable, and the front of the phase in- 
terface or chemical reaction is considerably distorted. Two main forms of disruption of stab- 
ility are possible in this case. Sometimes with weak "supercriticality," i.e., a small de- 
parture from the surface of neutral stability in parametric space in the region of instabil- 
ity, a regular periodic cellular structure appears at the front, the amplitude of which grows 
monotonically from zero with an increase in supercriticality. Sometimes upon a transition 
through the indicated surface disturbances of finite amplitude develop immediately at the 
front: dendrites appear which, losing stability in turn, form peculiar branched dendritic 
structures. Both these forms have been observed, e.g., in crystallization from melts and solu- 
tions [i]. A well-known example of the formation of dendrites is the appearance of hoarfrost 
or frost patterns on glasses upon the sudden cooling of air, when it becomes supersaturated 
with water vapor. 

The questions of the conditions and the form of the disruption of stability are important 
in a scientific and an applied respect, since the onset of instability can radically alter 
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both the character of the occurrence of the process and its result. For example, the struc- 
ture of metal ingots obtained in the solidification of melts containing an admixture, and 
hence their strength and other physicomechanical characteristics, are largely determined by 
the properties of the dendrites which develop and the structure of the two-phase zone sepa- 
rating the crystals and melts, which depends on them [2]. Therefore, the problem of the stab- 
ility of the front of a phase transition or chemical reaction with respect to small distur- 
bances has been investigated repeatedly. In particular, it has been analyzed in application 
to the process of crystallization at plane [3], cylindrical [4], and spherical [5] surfaces. 

However, the majority of the existing investigations in this direction contain a number 
of unjustified assumptions and inaccuracies. In [3-5], e.g., arbitrary assumptions are even 
made concerning the undisturbed concentration and temperature fields, the stability of which 
is essentially being investigated, while steady-state equations are mainly used for the de- 
scription of small disturbances, which essentially depend on time by their very nature. At the 
same time, it is easy to show that the nonsteady terms, which are neglected in [3-5], have 
the same order of magnitude as the terms remaining in the equations. 

In the present report this defect is eliminated and problems on the development of instab- 
ility are analyzed within the framework of the general theory of hydrodynamic stability. In 
order not to encumber the main idea with superfluous calculations, we adopt certain simplify- 
ing assumptions which permit considerable abbreviation of the computations but do not affect 
the fundamental aspect of the matter. That is, we assume that the process (for determinacy we 
will consider the process of crystallization from a supersaturated solution) is self-similar, 
is limited to a single diffusional process, diffusion of the dissolved substance in the li- 
quid phase, i.e., it occurs under isothermal conditions, and it does not lead to a change in 
specific volumes. We also neglect the dependence of the coefficient of diffusion on the con- 
centration, assuming, for example, that the solution is dilute, and kinetic effects at the 
crystallization front, assuming that local thermodynamic equilibrium is achieved at it. We 
use the well-known solutions of the self-similar Stefan problem [6, 7] to describe the un= 
disturbed processes with plane, axial, and spherical symmetries. 

Plane Front 

In this case the undisturbed process is described by the solution of the problem 

Oc 02c 
- -  O - -  , c - - +  c |  , x - - ~  o ~  , 

Ot Ox ~- 

d X  Oc 
C = C o ,  (p - -  co) - -  = D - -  , x = X ( t ) ,  

dt Ox 

(1) 

with the last condition, reflecting the balance of the crystallizing substance at the crystal- 
lization front, serving as the definition of the quantity X(t). In the self-similar regime 
the concentration c depends on the single variable x ~ = x/X(t); the corresponding solution 
of (i) has the form 

c = c ~ - - A c  e r f c ( a  ~ , A c = c ~ - - C o ,  
e r fc  a ( 2 )  

X (t) = (X~ + 4a2Dt) 1/2, 

while for the definition of the dimensionless coefficient ~ we have the equation 

(z exp (c~) erfc cz = 1- . Ac (3 )  
V K  p - - C o  

From this it follows, in particular, that a is determined only by the values of the con- 
centration in the crystal and in the solution near the crystal and far from it; usually 

<< i. At the crystallization fronti~e have, from (2) and (3), 

Oc _ 2 a Z ( P - - C ~  --OZc -=- 4~176  x ~- X ( t ) .  ( 4 )  

Ox X Ox z X z 
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For small disturbances imposed on the process (2) the problem is written in the form 

Oc' 

ot 
--DAd, c'-+O, x - ~  ~ ,  

c' + Oc x ' =  - -  C o r k  (x') ,  x = X (t), 
Ox 

(5) 

(p - -  Co) 0--/- - -  c' + O--~ x'  - -  D + . . . . .  X '  X = X (t). dt \ OX OX ~ ' 

Here x ~ is the small disturbance in the shape of the front; K(x') is its curvature (positive 
when the front is concave in the direction of the solution); F is the effective coefficient 
of surface tension [3-5]. 

It is convenient to change to a coordinate system in which the front is stationary. Intro- 
ducing the dimensionless variables 

C r 12 2 bl 
,~ - , t -- t, ~ = i x - -  X (t)I, 

9 -- co D D (6) 

{~1} u { Y } , 6 u dX 2 ~ D  
= - - E  z = - E  " -  - dt X 

and allowing for (4), in place of (5) we obtain 

0z+ a+ o+ - 02+ + ~ + - - ,  + + 0 ,  ~ + o o ,  
at a~ o~ 2 a~ 2 a~ 2 

+ = - - 6 - - v K ( 6 ) ,  _ O % = _ 0 ~ _ _ + 6 + v K ( 6 ) ,  ~ O, 
O~ at 

(7) 

where K(~) is understood as the dimensionless curvature in the variables (6) and we introduce 
the parameter 

Co ru v = ( 8 )  
p -- co D 

At large t the quantities u and y can be treated approximately as constants, i.e., their 
weak time dependence can be neglected in the solution of (7). It is easy to see that this 
dependence shows up only in the extension of the resulting solutions to large time intervals 
At ~ t, in which there is no need to investigate the stability. An analogous simplification 
was adopted in [3-5]. 

We represent the functions ~ and ~ in the form 

{+ (9) 6 } = { ~ (~) } exp [o)t + i (• + • 

and, solving Eq. (7) with the boundary condition at infinity, we obtain 

q)(~) = (I)e -z~,  % - -  (1/2) {1 + [1 + 4 (o) + • •  • + • ( 1 0 )  

Two conditions at the front from (7) yield a system of two homogeneous linear equations 
for the constants ~ and A; the characteristic equation of this system 

(~ -- I)(I -- ~• = ,o (ii) 

defines ~ as a function of the dimensionless wave number • and the parameter y. Disturbances 
for which m > 0 are unstable. 
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We obtain the condition of instability for a disturbance with a given x by using the def- 
inition of % in (i0): 

• < 1/V~. (12) 

Using the linear scale D/u introduced in (6) and the definition of y, we rewrite this condi- 
tion for the dimensionless wavelength of the disturbance: 

c o PD )1/2 
% > 2 ~ x  . (13) 

P--  co u 

The increment of the growth of disturbances has the form 

~  ?• (1--?• [ ( 1 +  ? - - ~ )  1/2 ] _ _  -- I (14) 

2 

and reaches a maximum at n=Xm(T) ;  in the ease of y << i, very important in practice, we 
approximately obtain 

Vd?l ( c o  FD ) ~/2 ~,~,~ --;-~-, ;~,~,~2z 3 . (15) 
p --Co u 

In real systems the characteristic transverse size L of the front is limited; this means 
that there is a minimum attainable wave number x: L = 2~D/uL. Therefore, with an increase in 
y to YL (i.e., for the given physical characteristics of the system, with an increase in the 
velocity of motion of the front to UL) the instability ceases; for y << i from (12) we have 
~L =96~. In opposition to the conclusion drawn in [3], however, an idealized infinite front 
ms unstable with respect to sufficiently long-wavelength disturbances, no matter how high 
the velocity u (or the parameter y). The latter is connected with the fact that the single 
stabilizing factor, the presence of surface tension, acts very weakly on such disturbances~ 
A model of such a type in [3], in which the quantity ~ was treated as the solution of the 
steady-state Laplace equation corresponding to the nonsteady equation in (7), would corre- 
spond to a characteristic equation of the type of (ii) in which % would be calculated from 
(i0) as before but with m = 0, It is clear that such a model leads to the former instabil- 
ity criterion (12) or (13), but Eqs. (14) and (15) are considerably altered. 

Cylindrical Front 

In this case the undisturbed self-similar process is described by the following equations, 
replacing (2): 

O2 

c = c ~ - - A c  E i ( - - a r  ) , R ( t ) _ _ ( R ~ + 4 ~ 2 D t ) , / 2 , o  
EI(--~ ~) (16) 

r ~  r l R  (t), Ac  = c., - -  c , ,  c ,  = c o (1 + F/R) ,  

(Here the influence of the surface effect on the equilibrium concentration of the substance 
in the solution near the front is allowed for.) For ~ we have, in place of (3), 

__ ~2 exp (~2) Ei (-- ~z) = Ac/(p - -  c.), (17) 

while the values of the derivatives at the f~ont are 

oc 2~x'- (p-- c,) 
o r  = R 

a2c 4~#(p--c,) (1 + 1 ) 
cgr ~ R z ~ , r = R .  

(18) 

In place of (7) we obtain, in dimensionless form, 
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oe~ 
o~ 

1 0 ( 0_~ ) OZ~ 1 Oz~ e#_+O,~_+oo ' 
O~ Ix -k - ~ 2 -  -k ~2 O0 ~ 

~ p = _ 6 _ y K ( 6 ) ,  aq~ _ a~ ( 1 ) a~ o~ + 1 + ~  5+?K(6), ~=2~, 

(19) 

where K(6) is understood as the difference in the dimensionless curvatures of a slightly dis- 
turbed front (r = R + r') and a cylinder (r = R), and we introduce the dimensionless quanti- 
ties 

C r U2 
~---- ~ ,  x-- t, 

p - - c ,  O 

{ ~ } =  u { r }, 8 _  u 2 a~D (.20) 
D z D r ' ,  u - -  R ' 

as well as the parameter (compare with (8)) 

Representing @ and 6 in the form 

Y = c o __Yu �9 (21) 
p - -  c. D 

from (19) we find 

{ 6 } = { cD([~) } exp [cox + i (• -}- n0)], (22) 

(~t) = ~K~ (~ V oz + • (23) 

where Kn(X) is a McDonald function, and the system of two linear equations for the constants 
and &, the characteristic equation for which has the form (we use the well-known expression 

for the curvature of a slightly distorted cylindrical surface) 

- -  V'~-+-  • d In Kn (x) x=2~, _ ~o -k 1/2 o~ z 
dxJ r 1 - -  y (nz-~ - • 1) -k I. (24) 

Let us make an approximate investigation of this equation for the case when ~= << I, 
which offers the principal practical interest. We first assume that = ~<< i. Using the 
principal term of a series expansion of the McDonald function, near the curve of neutral 
stability, i.e., for 2~ << i, from (24) with n > 0 we obtain 

1 + 2 o~zo) 1 
n ~ , x ( ( - -  n > 0 .  (25) 1- -y (n  2 + •  =2 ' 

Disturbances with wave numbers n and • become unstable if 

Y < y(:) (• ~. n-- t I I -, • ~ < - - ,  n2>0. (26) 
n nZ.+ •  1 o~ z 

It turns out that when n = ! disturbances are stable for any ~ and y, which is not surpris- 
ing, since such disturbances correspond to a simple shift of the cylinder in a direction per- 
pendicular to its generatrix. When y = y~x) (~) purely "longitudinal" disturbances (• 0) 
with a given n first become unstable, while with a further decrease in y ever more short- 
wavelength "transverse" disturbances are gradually excited and superimposed on them, 

Equation (26) also determines the boundary of the instability region 0 < ~  (n) in the 
(n, ~ plane for a fixed y. We have 
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1 n - - 1  ]1/2 ~ n > O .  (27)  •  (n2--1)  ' • ~2 ' 
n 

For small enough ~ this region first widens with an increase in n and then rapidly narrows. 
From the condition ~= • << i there follows the restriction y >> ~ on the region of applica- 
bility of Eq. (27) for angular wave numbers n which are not too large. 

For n = 0, which corresponds to axisymmetric disturbances, from (24) in the case of 
~2• 1 we obtain 

1 2 ~2 ] l 1 
co 2 • in ~ (~2• 1 -- y (• __ 1) ~" + 1 - -  "~ (• _ 1) In (~z2• ( 2 8 )  

Such disturbances are unstable if the value of m calculated from this is positive. It is easy 
to see that for any y there is a region of long-wavelength unstable disturbances. 

In the opposite limiting case of 2• >> i, using an asymptotic representation for the Me- 
Donald function, from (24) near the neutral stability curve we obtain 

a~ o~ -k 1/2 cz z 1 (29)  
V ~ - k  ~2 ~ • + - - - -  ~ + 1 ,  •  

2 ~  1 - -  y ( n  z + ~2 _ _  1) o~a 

in place of (25), from which it follows that in this case disturbances are unstable for which 
the parameters n and • satisfy the inequality 

y< y(2)(• ~ [i 1 ] 1 1 (30) 
2 =2 (• I) n2 + z2 _ 1 ' • >> =---f- 

Thus, when x>> n the region of instability of short-wavelength transverse disturbances hard- 
ly depends on the presence of longitudinal disturbances. It is easy to see that estimates 
(26) and (30) coincide when n >> i. Equations (29) and (30) are correct for any n~0, while 
for small u the condition ~ax >> 1 is equivalent to the condition y << e~. 

From Eqs. (25) and (29) it is also easy to determine that in the case of y >> =~ longi- 
tudinal disturbances with n m ~ i/3~y and36 ~ 0 will have the maximum growth rate, while in 
the case of y << 4 transverse disturbance~ with n m ~ 0 and~m ~ i/3~y will have the maximum 
growth rate. For intermediate y the fastest growing disturbances correspond to dimensionless 
wave numbers n m and~ different from zero. In principle one can obtain representations of 
them by investigating Eq. (24) numerically. Here it is clear that X m = 2~D/NmU represents 
the characteristic scale of the cellular structure developing at the front or the character- 
istic distance between "nodes" along the cylinder from which the growing dendrites start. In 
the latter case the quantity n m can be interpreted as the number of dendrites starting from 
one such node. If the very cylinder under consideration models a dendrite, developing at a 
plane crystallization front as a result of its instability, e.g., then X and n m characterize 

m 
the distance between its primary branches and the number of branches at each node, respec- 
tively. ~We note that in this discussion we entirely ignore the properties of symmetry of the 
crystal structure and the presence of preferred directions of crystal growth, so that its ap- 
plicability is conditional in a certain respect [4].) The stability characteristics are 
affected, as is easy to see, by only two dimensionless parameters, ~ and y; using their defin- 
ition in (17) and (21), it is easy to clarify the dependence of these characteristics on the 
physical parameters and on the growth rate of the cylinder. In particular, it is seen that 
an increase in u promotes the contraction of the instability region and a decrease in Xm' as 
occurred in the case of a plane front. In the self-similar problem under consideration the 
radius of the cylinder is not an independent parameter and affects the development of an in- 
stability only to the extent to which it determines the growth rate. Therefore, the asser- 
tion of the presence of a critical rate, upon exceeding which the given disturbances loses 
stability, primarily has physical meaning, but not a critical radius. 
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Spherical Front 

In this case for the undisturbed self-similar process instead of (i) or (16), we ohtain 

C=C~ 
Ac ierfc (0:r ~ 
r ~ ierfc 0: 

, R(t)  = (R~-b 40:2Dt) wz, 

1 ierfc z -- 
V~ 

exp (--  z 2) - -  z e r f c  z ,  A c  = c ~  - -  c , ,  

2F 

(31) 

instead of (3) or (17) the equation 

and instead of (4) or (18) 

2 a 2 exp (a 2) ierfc 0: -- 

t h e  e q u a t i o n s  

1 Ac 
l / ~  p - -  c ,  (32) 

Oc 2 0:2 ( p  - -  c , )  

Or R 

OZc 40:~ (p - -  c,) ( l _ +  1 ) 
-Or 2 = _ R 2  

(33) 

For small disturbances the problem is written in the form 

Or p2 OF p2 - @ -  + sin 0 + p2 sin 0 O0 O0 

1 0zqo 

p2 sin 2 0 0$ 2 ' 

q0-+0, ~-+oo; q~=--6--vK(6), ~=20:  2, 

oF o~-~ + 1 + - - 7  ~ + vK (6), ~ = 2 0:2, 

(34) 

where K(~) is the difference between the dimensionless curvatures of disturbed and undisturbed 
spheres, while the dimensionless quantities are defined in (20) and (21), 

We write the quantities ~ and d in the form 

6 } { (I)A(P) } Y~(0, ~) exp(a)~), (35) 

with Yn(0, ~) being spherical harmonics, while for ~(B) we obtain from Eq. (34) 

- -  ~ Kn+U2 (~ V~). (36) 
*(~)- V~ 

The characteristic equation of the system of linear equations for ~ and A, which follows 
from the last two equations in (34), has the form 

d[1 
- -  g ~  ctx ~ K~+1/2 (x)]x=2~2 co + 1/0:2 

V~ -- 1 - -  y (n - - 1 )  (n -b 2) -~ 1. (37) 

Again taking a a << i, near the neutral stability curve we obtain 

1 0 : ~  -q- 1 

-~-  (n -1- 1) ~ 1 - -  37 (n - -  1) (n -+- 2) (38)  
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It is easy to see that disturbances with n = 0 and n = i, corresponding to a virtual spher- 
ically symmetric change in the radius of the sphere and its displacement in space, are sta- 
ble and neutrally stable, respectively, for any value of y. Disturbances characterized by 
a spherical harmonic with an index n~>2 become unstable if 

2 ) l (39) 
y < y n ~  1 n + l  ( n - -  1) (n + 2) 

Disturbances having a wave number 

nm ~ ~ 4 + - -  2 ~, (40) 
v J 

grow faster than others. A comparison of Eqs. (37)-(40) with the analogous results in [5] 
indicates that, as in the cases of a plane and an axisymmetric front, the use of the models 
of [3-5], based on a number of approximations and intuitive assumptions, leads to consider- 
able inaccuracies. 

It follows formally from (39) that a growing sphere is stable with respect to small dis- 
turbances of all wavelengths if y > Y2 = 1/12, i.e., for 

R < R * -  4Co r ( 1 +  6c* z) (41) 
p - -  c o 

(here we used the definitions of u, y, and c, given above). To describe the undisturbed con- 
centration fields, however, we used self-similar equations which are approximately correct 
for c, ~ co = const, i.e., for diffusion toward the cylinder or sphere, only when R >> F. 
This imposes a lower limit on the range of values of the radius R which it is admissible to 
analyze within the framework of the developed theory. In particular, it is seen from (41) 
that F/R* ~ i, i.e., the conclusion that there is a critical value of the radius such that 
smaller spheres are stable, like the same conclusion in [5], cannot be considered trust- 
worthy. To verify it one must use other solutions of the Stefan problem, not self-similar, 
for unperturbed fields, the obtainment of which is a complicated independent problem. 

In conclusion, we note that the generalization of the results obtained to more realistic 
situations, when the motion of the front of a phase transition or chemical reaction depends 
on several processes of diffusion or heat conduction and on kinetic phenomena at the front, 
only leads to complication of the calculations but does not present any fundamental new dif- 
ficulties. The need to analyze such situations is determined not only by their applied sig- 
nificance, but also by the fact that many conclusions obtained earlier on the basis of models 
of the type presented in [3-5] must be reexamined. 

NOTATION 

c, weight concentration in solution; D, coefficient of diffusion; K, curvature; n, angu- 
lar number; R, radius of cylinder or sphere; r, r', radial coordinate and disturbance of the 
surface r = R; t, time; u, velocity of front; x, y, z, linear coordinates; X, coordinate of 
front; x', disturbance of a plane front; a, parameter of growth rate; F, coefficient of sur- 
face tension; y, parameter introduced in (8) or (21); 6, A, dimensionless disturbance of sur- 
face of the front and its amplitude; $, q, ~, N, dimensionless coordinates; e, ~, angular 
coordinates;d , dimensionless wave number; ~, wavelength of disturbance; 0, concentration in 
solid; ~, dimensionless time; @(~), O, amplitudes of disturbances of concentration; dimen- 
sionless concentration; m, dimensionless growth increment of disturbances. Indices: 0 and 
pertain to the states at a plane front and in the solution far from the front; an asterisk 
pertains to the state at a curved front; m pertains to the fastest growing disturbances; a 
degree sign pertains to self-similar variables. 
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